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Introduction 

Discrete models of membrane transport have pro- 
vided a great deal of insight into the process of ion 
movement  through channels (Hille & Schwartz,  
1978; Urban & Hladky, 1979; Finkelstein & Ander- 
sen, 1981; Latorre & Miller, 1983; Eisenman & 
Horn,  1983; Lfiuger, 1987). Such models consist of 
a set of occupancy states and a set of rate constants 
for transitions between the states. The states repre- 
sent conformations of  the channel with ions bound 
at specific sites, i.e., potential energy wells. The 
rate constants describe the movement  of an ion 
from one well to the next over  an intervening en- 
ergy barrier. This set of e lements - -s ta tes  and rate 
cons tan t s - -compr i ses  a kinetic model of the chan- 
nel, which can be solved using standard techniques, 
to yield an equation that specifies the current 
through the channel as a function of the bath con- 
centrations and the rate constants.  Even without 
further specification of  the rate constants,  many in- 
teresting conclusions about channel behavior can be 
drawn, such as: current saturation with increasing 
permeant concentrat ion,  interaction of unidirec- 
tional fluxes, competit ion between different per- 
meants and between permeants and blockers, and 
the complicated behavior of  a channel with confor- 
mational fluctuations. Such conclusions are inde- 
pendent of the model for the rate constant and are 
simply a consequence of  assuming a set of discrete 
occupancy states. 

The voltage dependence of the current is a con- 
sequence of the voltage dependence of  the rate con- 
stants and its study therefore requires a model of  a 
rate constant.  The model currently in use derives 
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from Eyring transition state theory (L~iuger, 1973). 
It gives the rate constant over  a barrier as an expo- 
nential of the free energy difference between the 
barrier and its associated well. This exponential is 
multiplied by a constant which we will refer to as 
the pre-exponential factor. Many of the current us- 
ers of  Eyring theory do not use the standard form of 
the pre-exponential factor (i.e., kT/h), instead they 
use it as an adjustable parameter  assumed identical 
for all barriers. This represents an implicit assump- 
tion that even if Eyring theory is not the proper 
theory for barrier crossing in a channel, the correct  
theory is of the same form as Eyring theory. We 
know of  no theoretical justification for this view. If 
this view is not accepted,  then using an Eyring form 
with an arbitrary pre-exponential factor can be 
thought of as a convenient  way of parameterizing 
data. This may be a useful thing to do, but a conse- 
quence of doing so is that no inferences about chan- 
nel structure can be made from the model parame- 
ters, because they have no physical basis. What is 
needed is either a justification for the Eyring form of  
the rate constants or some other more appropriate 
theory.  

In this article we examine the underlying physi- 
cal assumptions on which Eyring theory rests in 
order  to better  understand the origin of its form and 
its applicability to channel permeation. Based on 
this analysis we hope to convince the reader that a 
more reasonable model for these rate constants 
should come from diffusion theory.  As an example 
of  this approach we present a diffusion model using 
the mean first passage time theory (Schulten, 
Schulten & Szabo, 1981; Weiss, 1986; Cooper,  
Gates & Eisenberg, 1988). It is well known that, in 
the limit of large barriers (the so-called Kramers '  
limit), this theory yields a form similar to Eyring 
theory.  We investigate this limit to see if it might 
justify the use of  an Eyring-like form for rate con- 
stants in channels. Other diffusion theory based ap- 
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Fig. 1. Potential energy U(x) as a function of  position for use  in 
rate constant  computat ions ,  r is the min imum in the reactant 
well, p is the min imum in the product  well, and b is the max imum 
of the intervening barrier 

proaches are certainly possible (Levitt, 1986, 1987; 
Jakobsson & Chiu, 1987; Gates, Cooper & Eisen- 
berg, 1988). We choose this approach because it 
allows a natural comparison with Eyring theory. 

Theory 

In this section we: discuss the physical assumptions 
involved in Eyring rate theory and how they relate 
to an ion moving through a channel; present the 
basic equations of the mean first-passage time the- 
ory; and, finally, derive the large barrier limit of that 
theory. In order to make computations with the the- 
ories, we use the barrier structure shown in Fig. 1. 
It represents the potential energy, U(x), seen by an 
ion as it traverses one barrier in a channel. We add 
to it a component due to an externally applied volt- 
age, assuming that this component does not alter 
U(x) but only adds to it and further that it can be 
described as a constant field. Thus, the total poten- 
tial, W(x), can be written 

W(x) = U(x) + zqA Vx/8 (1) 

where z is the ion valence, q is the fundamental unit 
of charge, AV is the voltage difference across the 
system, and 6 is the width of the system. 

EYR1NG R A T E  T H E O R Y  

Standard derivations of the rate constant for barrier 
crossing using Eyring theory yield the following 
well-known equation (Hynes, 1985a) 

kT 
k/(TST) -~ exp(-AG'/kT) (2) 

where k is Boltzmann's constant, T is the absolute 
temperature, and AG' is the free energy difference 
between the well and the barrier (G'(b) - G'(r)). 
Note that we have identified the potential energy 
W(x) with the free energy G'(x), hence AG' = AW. 
Also it should be clear from the above that the volt- 
age dependence of the rate constant comes from the 
difference in the voltage at points b and r. 

The derivation of Eq. (2) requires two essential 
assumptions (see Appendix A). The first assump- 
tion is that the current through the system is so 
small that the spatial distribution of ions remains 
close to the equilibrium distribution. We call this 
the quasi-equilibrium assumption. This assumption 
should be valid in a limiting sense as AW gets large 
and thus currents get small. The second assumption 
involves the specific model used for the process by 
which an ion crosses the peak of the barrier. The 
usual assumption is that the particle moves across 
the peak like a gas molecule moving between colli- 
sions, i,e., it moves at a constant velocity (given by 
the mean thermal velocity) in the direction of cross- 
ing and undergoes no collisions during the crossing. 
This assumption is often referred to as the ballistic 
crossing assumption. 

Neither of these assumptions is likely to be 
valid in a channel. The quasi-equilibrium assump- 
tion requires that AW be on the order of 6-10 kT or 
larger for a simple barrier shape and no applied volt- 
age (see Results and Cooper et al., 1985). Various 
lines of argument indicate that this is not generally 
the case for channels (Finkelstein & Andersen, 
1981; Lecar, 1981; Jordan, 1984; Yellen, 1987). If an 
applied voltage is present, then AW is changed sim- 
ply due to superposition, being decreased in size in 
one direction and increased in size in the other di- 
rection (Fig. 2). Thus even if AW satisfies the quasi- 
equilibrium assumption at zero applied voltage, it 
could easily fail to do as AV is made large. 

The ballistic crossing assumption is the weaker 
of the two assumptions. It requires that the ion not 
interact with solvent as it crosses the barrier. An 
ion inside a channel is in a liquid-like environment, 
implying that the ion does not cross the top of the 
barrier ballistically; it diffuses across. This is a 
much slower process and involves many recross- 
ings of the peak (Frauenfelder & Wolynes, 1985). 
Thus, the Eyring theory pre-exponential factor 
overestimates the crossing rate. Since barrier 
heights and well depths are not known indepen- 
dently, data can be fit by assuming a larger AW, 
offsetting the overestimate of the pre-exponential 
factor. 
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Transition state models such as Eyring theory 
are best suited to describe chemical reactions in the 
gas phase (Hynes,  1985a). Their  application to liq- 
uid state problems has been criticized for diflusion 
through membranes (van Dijk & de Levie, 1985), 
for diffusion through channels (Levitt,  1982, 1986; 
Cooper,  Jacobsson & Wolynes,  1985; Cooper et al., 
1988), for chemical reactions in liquids (Kramers,  
1940; Skinner & Wolynes, 1980; Hynes,  1985b), and 
for enzymatic reactions (Debrunner & Frauen- 
felder, 1982; Hanggi, 1983; Frauenfelder & Wo- 
lynes, 1985). These diverse references agree that 
the preferred models are based on diffusion theory. 
Diffusion theory was abandoned in the study of 
channels because it was not thought to be a molecu- 
lar theory and because it was not clear that it could 
describe the interactions between ions as they move 
through a channel (nonindependence) (Hille, 1979). 
Diffusion theory can be founded on molecular level 
considerations (reviewed in Cooper  et al., 1988) and 
recent work has shown that a diffusion theory can 
describe deviations from independence in both a 
one-ion and a two-ion channel (Levitt  1986, 1987; 
Gates et al., 1987, 1988). Therefore  if discrete 
models are used, the Eyring form for the rate con- 
stants should be replaced with a diffusion model. 

MEAN FIRST-PASSAGE TIME THEORY 

The mean first-passage time (MFPT) theory for rate 
constants mentioned in the introduction is a diffu- 
sion theory.  The fundamental result of  that theory is 
the following equation (Schulten et al., 1981): 

[ z (p ) ]  ' 
kf(MFPT) = rf + r, Z(r)J (3) 

where <f-is the average time an ion takes to diffuse 
from its initial position in the reactant well to the 
peak of  the barrier; rr is the analogous time from the 
product  well to the peak of  the barrier; and Z(p) and 
Z(r) are integrals over  the potential W(x). The rate 
constant kf(MFPT) depends on the initial position 
(i) of  the diffusing ion. This dependence is absent 
from Eyring theory because it assumes an equilib- 
rium distribution in the system. In a channel, ions 
enter  the well from its end points, so in rf, i = r and 
in rr, i = p. zf and rr can be computed from the 
standard equations of  t ime-dependent diffusion in a 
potential (Goel & Richter-Dyn, 1974; Schulten et 
al., 1981; Gardiner,  1983; Cooper  et al., 1988). The 
resulting equations are given below. They specify 
the passage times in terms of  the particle diffusion 
coefficient D (here assumed to be position indepen- 
dent) and W(x). 
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Fig. 2. The potential profile from Fig. I with various applied 
voltages. Note that the positions of the minima and maxima shift 
with the applied voltage and that the well-to-peak energy differ- 
ence changes 

zf,rr = ~ exp((W(y) - W(x))/kT)dydx (4) 

Z(r) = s e x p ( -  W(x)/kT)dx (5) 

Z(p) = e x p ( -  W(x)/kT)dx. (6) 

Note that if the barrier is symmetric Z(r) = Z(p), 
and rE = rr = r yielding the simpler result kf(MFPT) 
= l/(2r). However ,  even if U(x) is symmetric,  W(x) 
is not when a potential is applied, so this simple 
result is not very useful in describing a channel. 
Note  also that the MFPT rate constant depends on 
the entire function W(x), and not just on the param- 
eters W(r), and W(b) as in Eyring theory. Finally, 
since the MFPT is a nonequilibrium theory,  the pre- 
exponential  factor depends on a transport parame- 
ter, D, not found in Eyring theory.  

One use of  the above equations is to assess the 
validity of the quasi-equilibrium assumption. Under 
this assumption, the ions have initial positions de- 
termined by a Boltzmann distribution. Thus the 
MFPT, in this case, will be a weighted average of 
the passage times for all these initial positions, with 
the weighting being the fraction of ions starting 
from that point as given by the Boltzmann distribu- 
tion. This equilibrium passage time can be obtained 
from the above by integrating the product  of  the 
Boltzmann distribution and r. The resulting equa- 
tion can be simplified to the following form 
(Schulten et al., 1981): 

rf(eq) = l s  eW(x)/kT ls e-W(Y)/kZdy]2 dx/Z(r). (7) 

An analogous equation for rr (eq) also exists. 
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Fig. 4. The Gaussian approximation to the surface of  Fig. 3 

K R A M E R S '  L I M I T  

There exists a simple limit of the MFPT theory that 
has a form similar to that of Eyring theory (Schulten 
et al., 1981). This limit describes the behavior of the 
MFPT as AW gets large. This well-known limit was 
first derived, in a different manner than we will use, 
by Kramers (1940). One can obtain the limit by ap- 
plying the method of steepest descent to Eq. (3) (for 
details see Appendix B). 

This method consists of approximating the ar- 
gument of the exponential in Eq. (4) by a three-term 
Taylor series in the neighborhood of the point 
where the integrand is largest. The exponential of 
the Taylor series expansion in the neighborhood of 
that peak yields a Gaussian function that approxi- 
mates the integrand fairly well in the limit of large 
barriers, as can be seen by comparing Figs. 3 and 4. 
With this Gaussian for the integrand, the multiple 
integral can be evaluated analytically and yields the 
following equation, known as Kramers' equation. 

DmoJ( r)o~( b ) 
kf(K) - 2~rkT e x p ( - A W / k T )  (8) 

where m is the ion's mass, and the ~o's are given by 

~o2(s) = 1 O2Wl~ 
Ox 2 , (9) 

a~ has the units of a frequency and can be thought of 
in simple terms as an attempt frequency for a parti- 
cle trying to reach the barrier (if s = r) or for a 
particle leaving the barrier and going to the well (if 
s = b). This interpretation is similar to that usually 
given for the pre-exponential term in Eyring theory. 

Note that this equation has the same depen- 
dence on well depth and barrier height as does 
Eyring theory, but the pre-exponential factor de- 
pends on the diffusion coefficient and on the shape 
of W(x) in the neighborhood of the well minimum 
and the barrier maximum. This result is significant 
because it implies that even though the exponential 
dependence in Eyring theory is asymptotically cor- 
rect, the use of a single pre-exponential factor for all 
barriers is not in general correct, because this factor 
should also depend on the shape of the potential 
function. It is perhaps worth reiterating that this 
result is only valid in the limit of large AW and, as 
we shall see later, how large AW has to be depends 
on W(x). If W(x) is composed of parabolic seg- 
ments, then AW need not be enormous; but if there 
are ledges in the profile or if W(x) is very flat and 
broad at the minimum or maximum, then the Kra- 
mers' approximation might require a substantial 
AW. 

Results 

MFPT THEORY VERSUS EYRING THEORY IN THE 

ABSENCE OF AN A P P L I E D  P O T E N T I A L  

We begin comparing the two approaches by seeing 
what they predict when fit to an experimentally de- 
rived rate constant. The best characterized rate 
constant in the channel literature is that for Na + 
crossing the central barrier of the gamicidin channel 
(Levitt, 1978; Urry et al., 1980; Finkelstein & An- 
dersen, 1981; Eisenman & Sandblom, 1983; Hladky 
& Haydon, 1984). The literature values, at zero 
transmembrane voltage, vary from 3.2 • 10 6 s e e  -1 
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Table l. Rate constant as a function of AU for the potential 
shown in Fig. 1 

AU (kT) Equilibrium Nonequilibrium Kramers '  
rate (sec -~) rate (sec ~) rate (sec ~) 

2.0 1.027 • l0 n 9.287 • 107 8.922 • 107 
4.0 2.453 • 107 2.407 • 107 2.415 • 107 
6.0 4.913 • 106 4.899 • 106 4.864 x 10 ~ 
8.0 8.851 • 105 8.847 • 10 s 8.846 • 105 

10.0 1.497 • l0 t 1.497 • 10 ~ 1.496 • 10 ~ 

to 2.5 • 107 sec ~. We use the value 1.5 x 107 s e c t .  
The standard form of Eyring theory,  Eq. (2), re- 
quires a well-to-barrier free energy difference of  
12.9 kT to give this rate. 

To perform this calculation with the MFPT the- 
ory we use the Kramers '  limit, Eq. (8). This re- 
quires more information about W(x). For simplicity, 
assume a symmetric barrier with a simple quadratic 
shape (Fig. 1), thus oJ in the well will be the same as 
~o at the peak of  the barrier. To calculate ~o we need 
to know the well-to-peak distance. Since this dis- 
tance is not known we investigate several values. 
As a first approximation assume that the gramicidin 
channel has three barriers, one in the center and 
one at each mouth, and also two binding sites inside 
the entry barriers. If we assume all five structures 
are the same size, then a well-to-peak distance of 
0.52 nm would be obtained from the 2.6 nm overall 
length of the channel. The one remaining unknown 
is the diffusion coefficient for Na +. We use the ex- 
perimentally derived value !.4 • 10 -1~ mZ/sec (Dani 
& Levitt ,  1981). These values yield a peak-to-well 
energy difference of 4.6 kT. This seems more in line 
with the observation that an ion sees a fairly small 
barrier as it traverses the gramicidin channel 
(Finkelstein & Andersen, 1981; Jordan, 1984). A 
broader  central barrier seems more likely; this 
would require an even smaller peak-to-well height 
but would be so small that the Kramers '  limit would 
not be accurate and the full integral expression 
would be needed. If the barrier is only 0.1 nm wide 
then the well-to-peak height is 8.5 kT, To get the 
Kramers '  result to agree with the Eyring result (AG' 
= 12.9 kT) requires that the barrier be 1.4 x I0 2 
nm wide. It takes 185 such barriers to fill a gramici- 
din channel. 

These results show that the MFPT theory and 
the Eyring theory can give orders of  magnitude dif- 
ferent estimates for the rate constant over a given 
W(x). This difference comes about because of  the 
vast overest imate of  the barrier crossing rate im- 
plied by the Eyring model. The Kramers '  limit of 
the MFPT contains a more reasonable model for 
barrier crossing but maintains the same exponential 
dependence on AW; thus it might be a reasonable 

replacement for the Eyring form. It is necessary to 
check this assertion by examining how good an ap- 
proximation the Kramers '  limit is to the full MFPT 
equation. This requires two types of tests; first, in- 
vestigate the limit for various barrier shapes of in- 
terest; and second, compare the voltage depen- 
dence of the Kramers '  expression and the full 
MFPT theory.  This is done in the next two sections. 

RATE C O N S T A N T  AS A F U N C T I O N  

OF BARRIER SHAPE 

We begin investigating the Kramers '  limit by com- 
paring it to the full MFPT result for barriers of dif- 
fering height but constant well and barrier positions. 
We use the same barrier structure used in the last 
section but vary AU. To do this we must specify a 
starting point for the ions. The obvious choice is the 
left boundary,  but it is also of some interest to start 
the ions from an equilibrium distribution. This al- 
lows an estimate of  the error  made in using the 
quasi-equilibrium assumption when AW is not large 
enough to ensure an equilibrium distribution. 

The first column of Table 1 shows the results of 
a set of such computations.  The kf(MFPT) is shown 
for various values of AU with an equilibrium initial 
distribution of  particles in the well. As expected,  
the rate constant falls as AU increases. In the sec- 
ond column the particles are started initially at the 
left boundary;  note that this gives a smaller rate 
constant since, with an equilibrium initial distribu- 
tion, many of the particles start closer to the peak 
and thus have a shorter distance to diffuse before 
leaving the system. The table shows that, for this 
barrier structure, the difference between the equi- 
librium and nonequilibrium initial distributions is 
never  more than about 10%. The third column 
shows the rate constant as calculated from the Kra- 
mers '  equation. As AU gets large, columns 1 and 2 
approach the Kramers '  equation as they should, 
and the Kramers '  equation does not differ by more 
than 15% for any of the cases. 

One of  the problems with the Kramers '  limit is 
that it only depends on W(x) in the vicinity of r and 
b. To see the problems this can cause, consider 
three other  possible barrier structures for the grami- 
cidin channel. If the barriers at the mouth are out- 
side the membrane field, then the two wells and the 
central barrier fill the entire 2.6 nm. This could oc- 
cur in several ways. The most obvious way would 
be to have the wells and barriers wider. This would 
clearly require a smaller barrier and the Kramers '  
limit would.be a worse approximation. Somewhat  
more interesting is the possibility that the barrier 
and wells are the same shape as before but that a 
ledge fills the rest of  the channel. Such a ledge could 
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Fig. 5, Various potential profiles for a gramicidin channel .  (a) 
Profile with a ledge between the wells and the central barrier. (h) 
Profile with the ledge between the mouths  and the wells. (c) 
Profile with a flat well offset by an amount  A to give the proper 
equilibrium binding 

Table 2. Rate cons tant  as a function of AU for the potentials 
shown in Fig. 5 

AU (kT) k~ (sec -L) k/, (sec -~) k,  (sec i) 

2.0 4.088 )< 107 5.348 x 107 3.863 x 107 
4.0 1.447 x 107 1.878 • 107 9.61l x 107 
6.0 3.777 • 106 4.416 x 106 1.712 x 106 
8.0 7.863 x 10 ~ 8.480 • 105 2.720 x 105 

10.0 1.424 x 105 1.471 x 105 4.138 • 104 

The a, b, c subscripts  on the rate cons tan ts  refer to the potential 
profiles in parts a, b, c of Fig. 5. 

be located between the channel mouth and the well 
or between the well and the central barrier  (Fig. 
5a,b). The ledge would be 0.52 nm wide. Since it 
does not affect any of the terms in Kramer s '  equa- 
tion, the Kramers' equation has no way of taking 
the ledge into account. Table 2 shows the effect of  
such a ledge on the rate constant.  The first column 
is the rate constant  for the case where the ledge is 
between the well and barrier and the second column 
is for the case where the ledge is located before the 
well. There is little difference in rate constant  be- 

tween these two cases but a comparison with the 
third column of  Table I shows that Kramers" equa- 
tion may now be off by more than a factor  of  two. 
The error in using the Kramer s '  equation again de- 
creases as AU increases. 

As a final example  of  the problems with the 
Kramers '  equation, consider a model for the chan- 
nel (Fig. 5c) where the wells are relatively struc- 
tureless regions depressed some amount  below the 
potential in the bath (to give the proper  equilibrium 
binding). Such wells have zero curvature,  and the 
Kramer s '  equation gives a zero rate for crossing the 
barrier. The third column of Table 2 gives 
kf(MFPT). Compar ison with the rate constants  in 
the first two columns shows that this profile can 
give rate constants between 0.6 and 0.3 times 
as large as the previous profiles. 

MFPT THEORY VERSUS EYRING THEORY WITH AN 

A P P L I E D  V O L T A G E  

In the traditional application of Eyring rate theory 
to channels,  an applied voltage is simply added to 
the free energy at the well minimum and barrier 
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maximum, which are assumed not to change posi- 
tion with applied voltage (Lfiuger, 1973). We use the 
same technique for k/(K) and then compare the 
results with kt(MFPT). We use the same profile as 
in the calculations in Table 1. The results are shown 
in Table 3. The first cohtmn shows kf(MFPT) with 
AU = 4.6 kT and voltages in the range of -+ 100 mV. 
The second column is the expected value of the rate 
constant using Kramers '  equation. This rate con- 
stant is always larger than the actual rate constant,  
and the discrepancy becomes larger with increasing 
applied voltage. In the range shown in the table the 
error  can be as large as 45%. 

One obvious source of  this discrepancy is the 
fact that the positions o f  the minima and maxima 
shift as a function of  the applied voltage (see Fig. 
2). Thus using the voltage at two fixed locations will 
obviously cause some error. Simple equations can 
be derived for the position of the maxima and min- 
ima as a function of applied voltage for the polyno- 
mial potential used here. From these equations one 
can derive a correction to kt(K) (see Appendix C for 
details). The equation for the corrected forward rate 
constant is 

kf(KC) = kr(K) exp{-AVZ/36AU} (10) 

where Ks(KC) is the corrected Kramers '  rate con- 
stant, kr(K) is the standard Kramers '  rate constant,  
AV is the applied voltage difference and AU is the 
well-to-peak energy difference at zero voltage. 
Clearly the smaller AU is, the larger the correction 
needed. The third column in Table 3 shows that the 
corrected rate constant is a distinct improvement.  
Over the voltage range used the error  is less than 
6%. This improves the agreement but does not 
make the two results identical; thus, there is some 
inherent error  in obtaining the voltage dependence 
of  the rate constant by this simple addition method, 
The agreement would be less dramatic if AU were 
smaller, since then the Kramers '  equation itself 
would be a worse approximation. 

Discussion 

The main conclusion of this paper is that the use of 
Eyring theory for rate constants in channels is not 
appropriate.  Its underlying assumptions do not re- 
flect the physical processes occurring in a channel, 
resulting in an overest imate of  the rate. This occurs 
because the Eyring model predicts a much more 
efficient and rapid barrier crossing than would a 
more realistic diffusion description. This can be 
seen dramatically by comparing the rates calculated 
using Eq. (2) with any of  the results in Tables 1 and 

T a b l e  3. Rate  c o n s t a n t  as a func t ion  of  app l ied  vo l tage  

AV (mV) k (sec i) k~ (sec -~) &,. (sec -I)  

- I 0 0  1.530 • 10 '~ 2.212 • l0 s 1.503 • l0  s 

75 9,009 x 107 1.136 x t0 ~ 9.140 • 107 

- 5 0  5.262 x ]07 5.831 x 107 5.294 • 107 

25 2.898 • 107 2.994 x 107 2.922 • 107 

0 1.537 • 107 1.537 • 107 1.537 x 107 

25 7.792 • 106 7.891 x 106 7.703 • 107 

50 3.755 x 106 4.051 • 106 3.678 x 106 

75 1.761 • 106 2.080 x 106 1.674 x 106 

100 7.670 • 105 1.068 x 10 ~ 7.257 • 105 

k is the full M F P T  ra te  cons t an t ,  k~ is the  K r a m e r s '  ra te  cons t an t ,  

and  &,  is the K r a m e r s '  ra te  c o r r e c t e d  for the shift  in well  and 

ba r r i e r  pos i t ion  via  Eq.  (t01. 

2 (this is made easier by using Fig. At).  The differ- 
ence can be orders of magnitude. 

In addition to this problem, there appears to be 
an inherent error  in obtaining the voltage depen- 
dence of any exponential rate constant by adding 
the applied voltage at the barrier peak and the well 
minimum to the intrinsic potential at those points. 
Some of the discrepancy is due to the fact that the 
minima and maxima in the potential are not fixed, 
but rather shift in response to the applied voltage. 
The remainder of the discrepancy comes about be- 
cause the rate is not dominated by processes at the 
peak when the barrier heights are moderate.  These 
problems justify the use of the more accurate rate 
constants obtained from the MFPT theory. 

While it may be tempting to use Kramers '  limit, 
it is only valid for large barriers and suffers from the 
same problems in specifying voltage dependence as 
Eyring theory.  With the increasing availability of 
powerful lab computers and good quality numerical 
analysis programs it seems reasonable to calculate 
rate constants using the full MFPT theory. How- 
ever,  to do so requires the specification of a diffu- 
sion coefficient as well as the shape of the entire 
potential function W(x). This is more information 
than required by Eyring theory.  

The specification of D(x) is problematic. If U(x) 
is not known, but is to be determined by fitting a 
model to data, then it seems reasonable to use a 
constant D and absorb the spatial variation into 
U(x). If U(x) is known, then the question of how to 
determine D(x) is more critical. It could, in princi- 
ple, be computed from the underlying theory of the 
diffusion equation (see Cooper  et al., 1988). In that 
case D(x) is related to the variance of the distribu- 
tion function of  particle position. A molecular dy- 
namics simulation could be carried out, starting an 
ensemble of  particles at a point x in the potential in 
question. The variance in position after some time 
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would yield a measure of D(x). D(x) could also be 
computed from molecular dynamics simulations via 
the velocity autocorrelation function (see Rodger, 
Sceats & Gilbert, (1988) for a discussion of these 
methods). However, it appears that such computa- 
tions do not always give very good agreement with 
experimental data (Berkowitz & Wan, 1987). A less 
computationally demanding technique would cer- 
tainly be valuable. 

One particularly nice feature of this theory is 
that it predicts a shift in minima and maxima with 
voltage. Such a shift implies that a semi-log plot of 
an individual rate constant versus voltage is nonlin- 
ear (unlike Eyring theory; see Fig. AI). This phe- 
nomenon might explain the nonlinearity sometimes 
seen in semi-log plots of open channel block 
(Tomlins & Williams, 1986; Tang et al., 19881). 

We have presented a detailed description of the 
assumptions of Eyring theory and would be remiss 
if we did not mention the assumptions underlying 
the diffusion approach to rate constants (for a more 
complete discussion see Cooper et al., 1988). There 
are three assumptions necessary for the validity of 
the diffusion theory used in this paper. First, it must 
be assumed that the diffusing ion is always at veloc- 
ity equilibrium with its environment; in a liquid this 
is a reasonable assumption. Second, the potential 
function U(x) cannot vary too rapidly with position, 
but given the small amplitude of channel barriers 
this does not seem to be much of a problem either. 
Finally, the potential function must be static; this 
requires that the channel protein not have confor- 
mational fluctuations (relevant to permeation) on 
the time scale of ion movement through the chan- 
nel. This is a questionable assumption. Diffusion 
models of rate constants not using this assumption 
are under development (reviewed in Hynes, 
1985a,b). 

An important issue remains to be resolved. If 
one believes that diffusion models are indeed the 
correct physical approach to channel modeling, 
then one has at least two choices when modeling a 
specific channel: one can either use the Nernst- 
Planck approach (Levitt, 1986; Gates et al., 1987, 
1988) or one can use a discrete approach with a 
diffusion model for the rate constants. It is not obvi- 
ous to us that these approaches will always give the 
same results. Further work on this question needs 
to be done, 

Tang, J.M., Wang, J., Eisenberg, R.S. 1988. K=-selective 
channel form sarcoplasmic reticulum of split lobster fibers. J. 
Gen. Physiol. (submitted) 
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Appendix A 

Derivation of Eyring Theory 

Consider a particle in well r of Fig. 1, moving across the barrier 
to well p. During this process it must cross the point b, a point 
known as the transition state. Standard chemical kinetics gives 
the rate of disappearance of particles in well r as 

d[r] 
dt - k/(TST) [r]. (A1) 

However, this rate can also be obtained as the product of the 
concentration of particles at b times the rate at which such parti- 
cles decay into well p (call this rate Rr). Therefore 

d[r] Rr[b ] 
dt kr(TST) [r] = Rf [b] -~ kr(TST) - [r] " (A2) 

6 25 x 1012 

12 
1 0  

11 
1 0  

kTST ~sec 

10 
1 0  

1 0  9 I r i i i i "% 

2 4 6 8 8 7 4  

- zx( i ' /k  T 

Fig. A1. Barrier crossing rate given by Eq. (A 1 I ) as a function of 
AG' 

Quasi-Equilibrium Assumption 

Assume that the rate over the barrier is so small that it does not 
significantly perturb the equilibrium of particles in the well at r, 
then Jr] and [b] can be related by an equilibrium constant K 

A standard thermodynamic result relates an equilibrium constant 
to the Gibbs' free energy difference between products and reac- 
tants, If this result is applied to the r - b equilibrium we obtain 

AG = - k T l n  K AG = AH--  TAS--+ K = e-6H/kre6S/k. (A4) 

[b] kj.(TST) = Rf K. Equilibrium statistical mechanics relates the above entropy dif- 
K = [7] -+ (A3) ference to the partition functions of the states r and b as follows: 
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Q(b) 
zXS = k In - -  (A5) 

Q ( r )  " 

Factor out of  the partition function of b its translational term in 
the direction of crossing,  q,, then 

Q ( b )  = q , Q ' ( b )  (A6) 

where  

q, - ~ M h  (A7) 

m is the particle mass ,  h is Planck 's  constant ,  and ,~ is the length 
of the transition state region. Thus  

q~Q'(b)  
K e Amk~ = q, e AaV~ (A8) 

Q(r)  

where 
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Q ' ( b )  
A G '  = ~ H  k T  in - -  (A9) 

Q(r)  " 

Ballistic Crossing Assumption 

Having an equation for K we now need an equation for R I. Model 
R I by a s suming  that any particle entering a region of length 2~ 
centered at the top of the barrier goes over  to well p unhindered 
by collisions. This can be expressed  as follows: 

V / 2 k T  
R t = 5 ~  - where V =  ~ J ~ - m i s t h e  I-l) lhermalveh~city.  (AI0) 

Thus  we can write for k ~ ( I S T I  

gqt# ~,(;'/,u = ~ ( at"'k7 k t ( T S T )  = K R t = ~ - -  ' -  " . (Al l )  

Note that k T / h  = 6.25 • 10 ~: sec-L Equation (Al l )  is shown 
graphically in a semi-log plot in Fig. AI 

A p p e n d i x  B 

Derivation of the Kramers' Limit 

In this appendix we derive the Kramers '  limit to Eq. (4). As the 
energy difference between barrier and well ( A U )  gets large, the 
integrand in Eq. (4) becomes  dominated by a Gaussian-l ike peak 
( s e e  Fig. 3). Let  f i x ,  y )  denote the integrand. A Taylor series 
expansion off (x ,  y) about its peak yields 

f ( x ,  y )  = e x p [ A U / k T ]  e x p [ - a ( x  - r) 2 + c y  2] (B1) 

where 

1 0 2 U  �9 1 02U I, 
a = ~ Ox ~ c = ~ Ox ~ . 

(B2) 

The region of integration can be extended to +zc with little error 
when  2~U is large ( s e e  Fig. 4). Thus  

e~U/k7 
- 2 , .   B3, 

These  integrals are of  the following s tandard form 

f ~ e d x  = (B4) 

Combining the above yields Kramers '  equation 

1 D m w ( r ) w ( b )  
ky (K)  2r 2~r e ~u/~7 (B5) 

where 

1 O2U] 
c~ = m Ox 2 I~ " (B6) 

A p p e n d i x  C 

Derivation of the Correction to Kramers' Equation 

In this appendix we derive an express ion for AW as a function of  
AU and AV for a simple piecewise quandrat ic  potential like that 
of  Fig. I. If we normalize the length of the sys tem such that the 
left and right endpoints  are at x = -+3, then the following expres-  
sion are obtained 

left well: U(x)  = ~ { x  2 +  4x + 3} (C I) 

barrier: U(x)  = ~2 U {1 x 2} (C2) 

AV {x everywhere:  V(x )  = ~ -  + 3} (C3) 
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For  each  region,  c o m p u t e  W(x) = U(.r) + V(.v) and  find the new' 
e x t r e m u m  for that  region.  

AV 
left wel l :  .v,, = - 2  6 A ~  (C4) 

,..XV 
barr ier :  .v~, - 6 ~ U "  (C5) 
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Subs t i t u t e  these  e q u a t i o n s  into the W ( x )  e x p r e s s i o n s  and com- 

pute  the d i f fe rence  AW = W(x , , )  - W(x,,). 

k V  2~V 2- 
A.W = AU + 3 - -  + 36AU " (C6) 

The first two  t e r m s  are  the resu l t  o b t a i n e d  if  there  is no shift  in 
e x t r e m a :  the las t  t e r m  is the co r r ec t i on  for the shift .  


